теорема sin, cos, tg
Ответы:
Теорема косинусов Квадрат любой стороны треугольника (a) равен сумме квадратов двух других сторон треугольника (b и c), минус удвоенное произведение этих сторон на косинус угла (α) между ними.
Доказательство:Рассмотрим треугольник ABC. Из вершины C на сторону AB опущена высота CD. Из треугольника ADC следует:
Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:
Приравниваем правые части уравнений (1) и (2) и:
или
Случай, когда один из углов при основании тупой (и высота падает на продолжение основания), полностью аналогичен рассмотренному.
Выражения для сторон b и c:
Теорема синусовДля произвольного треугольника
где a, b, c — стороны треугольника, α, β, γ — соответственно противолежащие им углы, а R — радиус описанной около треугольника окружности.
Доказательство:Достаточно доказать следущие положения:
Проведем диаметр | BG | для описанной окружности. По свойству углов, вписанных в окружность, угол прямой и угол при вершине G треугольника равен либо α, если точки A и G лежат по одну сторону от прямой BC, либо π α в противном случае. Поскольку sin(π α) = sinα, в обоих случаях a = 2Rsinα. Повторив тоже рассуждение для двух других сторон треугольника получаем: