В параллелограмме АВСД проведины высоты ВН и ВЕ к сторонам АД и СД соответственно,при этом ВН равно ВЕ.Докажите,что АВСД-ромб.

CategoriesИнформатикаПредмет

В параллелограмме АВСД проведины высоты ВН и ВЕ к сторонам АД и СД соответственно,при этом ВН равно ВЕ.Докажите,что АВСД-ромб.

Ответы:

У параллелограмма противоположные стороны равны и противоположные углы также равны. Если мы докажем, что равны его две стороны, выходящие из одной вершины, то толучим параллелограмм с равными сторонами, а это и есть ромб.

Рассмотрим треугольники АНВ и ВЕС. Они прямоугольные, поскольку ВН и ВЕ высоты. ВН = ВЕ по условию, Угол А = С как противоположные углы параллелограмма, следовательно, Угол АВН = СВЕ. Прямоуг. треуг. АНВ = СЕВ по катету и прилегающему к нему острому углу.

Из равенства этих треугольников следует равенство сторон АВ = ВС. Отсюда следует, что АВ = ВС = СД = АД. А, как было сказано вначале, параллелограмм с ровными сторонами  это ромб.